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TWO-PHASE FLOWS WITH FRICTION

G, V. Zhizhin UDC 532,526

Results are presented of a study of the equations of one-dimensional steady two-phase flows,
taking account of friction with the channel walls. :

§1. One-dimensional steady flows of a wet vapor in thermodynamic equilibrium are studied. The ther-
mal conductivity of the vapor, the volume of the liquid phase, and the difference between the phase velocities
are not taken into account.

It is assumed that friction is the only uncompensated external action on the flow. These flows belong
to the class of flows with one internal degree of freedom [1] — the phase transition — and one external action
— friction,

The effect of friction appears to one degree or another in all motions of two-phase media in channels,
The pressure drop in a channel due to the performance of work against friction is an important engineering
characteristic. Many empirical relations are known for calculating the pressure loss due to friction [2].
However, each of these has a limited range of application and does not reflect the dynamics of the flow of a
wet vapor. It is of interest to study the appropriate differential equations to determine the general qualitative
character of flows of a wet vapor acted upon by frictional forces following any resistance laws for all possible
values of the parameters of a two-phase medium compatible with the conditions of the problem posed.

The results of the analysis can be applied to the little studied but practically important theoretical prob-
lem of the efflux of a self-evaporating liquid. This flow is, on the whole, nonequilibrium, but for a sufficiently
long channel it has a quasiequilibrium boundary region of wet vapor [3]. The cross-sectional area of the chan-
nel occupied by the wet vapor and also its mass flow rate vary from section to section as a result of the vapor-
ization of the metastable liquid at the center of the channel. The temperature of the liquid remains practi-
cally constant [3], and it will be shown later that this leads to the compensation of the geometric action of the
emerging stream on the flow of wet vapor in the boundary region. The equations describing this flow are the
same as the equations of equilibrium two-phase flow with friction.

§2. The equations of continuity, motion, and energy corresponding to the equilibrium flow of a wet
vapor in a channel of constant cross section have the form
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Fig, 1. Phase diagram of flow,

dp du
pdx + udx
dP - du dL
aP 4w AL (2)
dx te dx e dx
dTr du dx
€, — 4+ u— £o=0. 3)
7 dx + dx tr dx

The equation of continuity for the boundary region of a wet vapor formed in the outflow of a self-evaporat-
ing liquid has the form
dp du dA dG

- = . 3a
opdx + udy — Adx Gdx G2

The total mass flow rate through a channel of cross-sectional area S (assumed constant) is
G, = Apu + (S — A) p,tt,.

If it is assumed that the heat flux resulting from the temperature drop between the liquid and the wet
vapor is all expended in evaporating the metastable liquid, the velocity of the liquid is constant, since the
stagnation enthalpy and the temperature of the liquid are not changed. Therefore, the total flow rate of the
mixture is Gy = Spyuy; i.€., pu =pyu,. In addition, u,p, dA/dx =dG/dx, and, consequently, (dA/dx)=dG/dx,

Thus Eq. (3a) is the same as (3). The equations of motion and energy (2) and {(3) also retain their form
for the flow of wet vapor in the efflux of a self-evaporating liquid. The system (1)-(3) together with the Cla-
peyron—Clausius equation

ap _ ey @)
dr T
and the equation of state of an ideal gas
' dP | do, _ dT ®)
+ = s
Pdx pdx Tdx
can be solved for the derivatives
d . By 4L g 6)
dx F a, dx

where

b= b= k=P g =u =T k=M. F,=—ufy F,=—F;
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. x
Fig. 2. Integral curves corresponding to various types of
flow.

4 .
Fy :Y——Y lfs; Fy = oxfy; Fy=oufy, Fy=—nof, —2ufy; F = yMLf, — W'Ifs;
— Y-—
f1=02+x( v . -U); fr=(r—1M: (——Y i ——6)—0; o= —DoMidx; 0= L%
_— ) r

is the dimensionless temperature of the medium; a, = w/"yRT is the sound speed in a two-phase medium for an
infinite frequency of the sound vibrations [4]; and Mw = U/dw. »

If we introduce a new independent reduced length variable oriented along the channel
L

Y
¥ = (;—idu (7)

the last three equations of system (6) form an independent system of ordinary differential equations [5]:

dr _, Fubo o, M) do By o, Ma)

dx F(x, o, M2) " dy F(, o, M2),
M _ e _Folw 0, M2) (8)
dy, F(x, o, M2)

§3. Analysis of the solutions of system (8), as in [6] which is devoted to the study of nonequilibrium
two-phase flow, is performed in three-dimensional phase space with the coordinates MZ,, o, and ®. The tra-
jectories of this space reppesent the solutions of systems (8) and (6).

We determine the "zero" surfaces on which the derivatives of Egs. (8) and (6) vanish. These surfaces
are the following: the surface f, = 0, which passes through the axis Mk =0, o = 0, asymptotically approaching
the plane ¢ =1 (Fig. 1); on this surface dn/dy = 0; the plane o = 0 on which do/dx = dn/dx = 0; the plane ML =0
on which dMZ2,/dy =0;theplane »=0onwhich dMZ%,/dx =do/dx=dwn/dx=0, This plane is the set of equilibrium posi-
tions of the system, stable for M2, < ¢/[y —a(y —1)], and unstable for M2 >ad/[y—o(y—1)]. The remaining
nzero" surfaces lie outside the positive octant of phase space bounded by the plane ® =1.

Since the equilibrium positions of system (8) form a plane in three-dimensional phase space, the trajec-
tory is a straight line [7] in the neighborhood of each equilibrium position. Along these trajectories the point
representing the state of the system approaches the equilibrium position asymptotically or moves away from
it.

Points on the surface F(», o, M?,, = § are singular; at these points the derivatives of system (8) and (6)
have two-sided infinite discontinuities. This corresponds to the "crisis" phenomenon of steady flow — the
existence of limiting states at the channel exit where the flow velocity becomes equal to the local sound velocity
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[8]. Within the framework of the problem posed on equilibrium two-phase flow the frequency of vibrations
propagating in the stream must be rather small. In this case the sound speed in wet vapor must be calculated
for zero frequency of the sound vibrations. Such an equilibrium sound speed is calculated in [9, 10, 4]:

% (RT)'/? -
v v

/

d, =

Substituting Eq. (9) into the equation F (%, o, M2) =0 actually shows that the flow velocity u in the sec~-
tion where F =0 is equal to the equilibrium sound velocity ag.

The surfaces f;, =0 and F = 0, which intersect along the line [, divide the phase space into four regions,
in each of which the directions of change of the phase coordinates along the channel are specified in Fig. 1 by
arrows at the surfaces. Regions I and III correspond to flows with evaporation of drops of liquid in the wet
vapor and regions II and IV, to flows with condensation of vapor on drops for supersonic and subsonic veloc-
ities, respectively.

It is easy to see from Fig. 1 that there are three types of qualitatively different phase-space trajectories
{(a, b, ¢). These three types of trajectories are separated by limiting curves s, and s, forming limiting sur-
faces SyandS,. For a sufficiently long channel trajectories @ and b bring both supersonic and subsonic flows
to "crisis." Supersonic flows along trajectories e and subsonic flows along trajectories b are accompanied by
evaporation of drops of liquid. In subsonic flows along trajectories ¢ and supersonic flows along trajectories
b the flows produce condensation of vapor in the approach to "crisis. " Trajectories ¢ correspond fo super-
sonic flows from positions of unstable equilibrium of the system to positions of stable equilibrium. If a dis-
continuous transition does not occur in subsonic flows, a flow "crisis" does not arise for channels of any length.

The limiting curves s, are different in that when they reach the singular surface F = 0 the derivative
dn/dy has a one-sided discontinuity., The limiting curve s, does not reach the surface F =0, but goes to infin-
ity along the coordinate o. Parts of the phase-space trajectories in the vicinity of the plane » = 0 have no
physical meaning, since two-phase flows with a vapor content close to zero do not have a disperse structure
and are not described by Egs. (1)-(3).

Graphs of the variation of the flow parameters along the characteristic trajectories a, b, ¢ are shown
in Fig. 2. It is clear from these curves that in supersonic flows the velocity decreases, and the pressure,
temperature, and density of the medium are increased; in subsonic flows the velocity increases, and the pres-
sure, temperature, and density decrease.

§4, Study showed that independently of the laws of resistance for the flow of an equilibrium disperse two-
phase stream there are only five different types of supersonic flow (trajectories a, b, ¢, s, s,) and three types
of subsonic flows (trajectories a, b, sy). The character of the variation of the parameters of the medium —
velocity, pressure, density, and temperature — for all types of flow are the same as in uniform flows with
friction. The essential difference between the two-phase flows considered and one-phase flows is the possibil-
ity of supersonic flow without crisis (trajectory c). This property becomes important in the study of streams
of a self-evaporating liquid. The effect on the flow of a two-phase medium with one internal degree of free-
dom — phase transition — leads to evaporation of the liquid in the vapor in supersonic flows for velocities

cp 1/2 ; /2
u>T (r v ) and in subsonic flows for velocities u<T( row . If these conditions are not
c, v—! )

satisfied, vapor condenses. The rule mentioned holds also for flows of wet vapor formed in a stream of self-
evaporating liquid.

NOTATION

p, u, T, density, velocity, and temperature of medium; p;, P, vapor density and pressure; r, cy,, heat
of phase transition and specific heat of vapor at constant pressure; », L, vapor content at outlet and work of
stream against friction; x, independent variable oriented along channel; A, G, cross-sectional area of channel
occupied by wet vapor and its flow rate; p,, u,, density and velocity of metastable liquid; S, cross-sectional
area of channel; v, adiabatic index of dry vapor; R, specific gas constant; ap, equilibrium speed of sound.
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ASYMMETRY OF THERMOGRAVITATIONAL CONVECTION

P. F. Zavgorodnii, I. L. Povkh, UDC 536.252:532,781
G. M. Sevost'yanov, and N. S. Sidel'nikova

The nature and intensity of convective motion in a rectangular region with moving boundaries
of the solidification front are studied by the finite-difference method.

Thermal convection in regions with moving boundaries of the solidification front, its nature, and intensity
have an important effect on heat and mass transfer in the liquid phase, on the redistribution of an admixture in
the solid crust, and on the macrostructure of the finished casting. The three-dimensional problem of unsteady
thermal convection in a rectangular prism was formulated and solved in [1]. The plane case of thermal con-
vection was analyzed in [2] and that for a cylindrical region, in [3]. The considerable divergence in the cal-
culated results and in some cases the contradiction of the conclusions indicate the necessity of further study of
this problem with the aim of clarifying the determining factors of the process of thermal convection.

A region of rectangular cross section, semiinfinite along the coordinate 7,, was chosen for study in the
present report., The region is filled with a stationary homogeneous melt with an initial temperature T, higher
than its crystallization temperature.

Proceeding from the assumption that the vertical axis 075 is the axis of symmetry of the convective
streams, one of the halves of the region under consideration is represented in Fig, 1. The dimensions in the
diagram are relative, with the horizontal width being taken as the characteristic size, so that [, =1,

At a time T > 0 the temperature of the boundaries of the region is abruptly reduced to the crystallization
temperature, as a result of which the solid phase is formed at the periphery. The solidification front is as-
sumed to be plane. The dimensions of the liquid phase along the coordinates ny and n; and the thickness of the
top crust are assumed to be known functions of time:

e, =1 —k, VFo; &, = l,—k,VFo, H=Fk,VFo, 1)
where k,, ky, and kg are solidification coefficients.

In the Boussinesq approximation the initial system of equations in dimensionless vector form is written
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